
BigSEM for Text
Data
Text data is increasingly recognized as a rich source of information, offering insights that
traditional quantitative measures may overlook. Modern natural language processing (NLP) offers a
variety of techniques for analyzing text, such as sentiment analysis (Wankhade et al., 2022), topic
modeling (Vayansky & Kumar, 2020), and word embedding (Wang et al., 2019). These techniques
automatically extract information from text and transform it into meaningful values or vectors, by-
passing the need for labor-intensive manual coding.

Structural equation modeling (SEM) is a popular tool in the social and behavioral sciences for
analyzing relationships between observed and latent variables. Incorporating textual data into SEM
provides a promising avenue for researchers to integrate qualitative and quantitative data analysis.
In response to this opportunity, we developed TextSEM, an R package designed to incorporate text
data within SEM frameworks. This package leverages advanced NLP techniques to convert text into
latent variables, integrate them into SEM model, and conduct estimation.

Here, we demonstrate the practical application of TextSEM through examples using a teaching
evaluation dataset. 
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Example data
For illustration, we use a set of student evaluation of teaching data. The data were scraped from an
online website conforming to its site requirement, containing 38,240 teaching evaluations on 1,000
instructors. 

For each evaluation, we have information on the overall numerical rating of the teaching of the
instructor, how difficult the class was, whether the student took the class for credit or not, grade
the student received, etc. The data also contain short textual comments about the instructor's
teaching, as well as a list of tabs describing the course. Part of the data are shown below:

'data.frame' : 38240 obs. of  13 variables:
 $ id        : int  1 2 3 4 5 6 7 8 9 10 ...
 $ profid    : int  1 1 1 1 1 1 1 1 1 1 ...
 $ rating    : num  5 5 4 3 1 5 5 2 3 3 ...
 $ difficulty: int  3 4 5 5 5 5 5 4 5 5 ...
 $ credit    : int  1 1 1 1 1 1 1 1 1 1 ...
 $ grade     : int  5 4 5 7 3 NA 6 7 7 8 ...
 $ book      : int  0 0 0 0 0 1 1 1 1 1 ...
 $ take      : int  1 1 1 0 0 0 1 0 NA NA ...
 $ attendance: int  1 1 0 1 1 1 1 1 1 0 ...
 $ tags      : chr  "respected;accessible outside class;skip 
                    class? you won't pass ." "accessible outside 
                    class;lots of homework;respected" "tough 
                    grader;lots of homework;accessible outside 
                    class" "tough grader;so many papers;lots of 
                    homework" ...
 $ comments  : chr  "best professor i've had in college . only 
                    thing i dont like is the writing assignments" 
                    "Professor has been the best math professor 
                    I've had at thus far . He assigns a heavy 
                    amount of homework but "| __truncated__ "He 
                    was a great professor . he does give a lot 
                    of homework but he will work with you if you 
                    don't clearly unders"| __truncated__ 
                    "Professor is an incredibly respected teacher, 
                    however his class is extremely difficult . I 
                    believe he just ass"| __truncated__ ...



 

 $ date      : chr  "04/17/2018" "02/13/2018" "01/07/2018" 
                    "12/11/2017" ...
 $ gender    : num  1 1 1 1 1 1 1 1 1 1 ...



Text Sentiment
Sentiment analysis is the process of systematically identifying and quantifying the sentiment
expressed in a text.

Lexicon-based / dictionary-based
approach
A common method is the lexicon-based approach, where each word is assigned a sentiment score,
and the overall sentiment of a sentence is calculated as a weighted average of the words within it.
Here, we adopt the approach used by sentimentr  (Rinker, 2017), which utilizes a lexicon of
polarized words (Hu & Liu, 2004; Jockers, 2017) and adjusts these scores with valence shifters.

The lexicon-based sentiment analysis begins with tokenization, where each paragraph ($p_i$) is
broken down into individual sentences ($s_{1}, s_{2}, \cdots,s_{n}$), and each sentence ($s_{j}$)
is further decomposed into a sequence of words (${w_{1}, w_{2}, \cdots,w_{m}}$). Thus, each
word can be represented as $w_{i, j, k}$. For instance, $w_{2,3,1}$ refers to the first word in the
third sentence of the second paragraph.

Next, the words $w_{i, j, k}$ in each sentence are compared against a dictionary of polarized
words. Positive words $(w_{i, j, k}^+)$ and negative words $(w_{i, j, k}^-)$ are assigned scores of
+1 and -1, respectively. The context surrounding each polarized word is then analyzed, identifying
neutral words $(w_{i, j, k}^0)$, negative modifiers $(w_{i, j, k}^n)$, amplifiers $(w_{i, j, k}^a)$,
and de-amplifiers $(w_{i, j, k}^d)$. The sentiment score of each word is first weighted by its own
score, and then further adjusted based on the function and quantity of valence shifters within its
context. The sentiment score of the text is the average sentiment score of all words in the text.

AI-based sentiment analysis
The Korn Ferry Institute's AITMI team made sentiment.ai for researchers and tinkerers who want a
straight-forward way to use powerful, open source deep learning models to improve their
sentiment analyses. Wiseman et al. (2022) packed the method in an R package sentiment.ai  that
can produce the sentiment of text and it outperforms many other methods. 

The method is based on the Universal Sentence Embedding that embeds a text into a 512 by 1
vector. Then, it build a model between the embedded vector and the labels between the text for
prediction. 



Online app
We have developed online apps for both dictionary-based and AI-based sentiment analysis. We
created a video to show how to use the AI-based methods to get the sentiment of a text variables.
The obtained sentiment score is saved as a new variable in the data set that can be used in further
data analysis.



Text Embedding and
Encoders
Embedding techniques are widely used in modern NLP. These methods transform text
into numerical vectors, capturing both semantic and syntactic relationships with high fidelity (Patil
et al., 2023). Conceptually, this process can be viewed as factor analysis or principal component
analysis of the text to extract latent information. However, compared to those techniques,
embedding vectors are usually of higher dimensionality (e.g., 768 dimensions), which allows for a
more detailed representation of semantic and linguistic features.

The evolution of word embedding techniques has been substantial, from basic one-hot encoding to
approaches such as Word2Vec, GloVe, and transformer-based models. Notably, transformer models
like BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018) and
SentenceBERT (Reimers & Gurevych, 2019) have significantly advanced context-aware sentence
embeddings. These models are initially pre-trained on extensive text corpora and can be fine-tuned
for specific applications, enhancing their adaptability and effectiveness. BERT utilizes a deep
bidirectional transformer architecture to produce contextualized word embeddings that are
aggregated into sentence representations. SentenceBERT modifies BERT to optimize it
for sentence-level tasks by fine-tuning with natural language inference data, which enhances the
ability to compare sentence embeddings via cosine similarity. This optimization boosts BERT’s
efficiency
and effectiveness in applications such as semantic similarity assessment and information retrieval.

Furthermore, the development of Large Language Models (LLMs) has improved text embedding
generation. OpenAI, for instance, offers several GPT-based embedding models through its API
services, including the “text-embedding-3-small” and the more robust “text-embedding-3-large”
model (OpenAI, 2024). These models have demonstrated great capabilities across a diverse set of
tasks, including semantic search, clustering, and recommendation systems.

TextSEM supports the integration of both SentenceBERT models and OpenAI APIs for generating
text embeddings. However, the high dimensionality of these embeddings poses challenges for
direct SEM model estimation. To mitigate this, TextSEM employs Principal Component Analysis
(PCA) to reduce dimensionality, allowing users to tailor the reduced dimensions to their specific
requirements.

Our online app can directly embed text into vectors and save the vectors as an R data set.
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Use of the R package
TextSEM
The R package TextSEM can be used for SEM analysis with text data. To install the package, please
use

We now illustrate the use of the package through several examples.

Sentiment analysis
In this example, we introduce how to use the function sem.sentiment  to extract sentiment variables
from text and estimate the SEM model. Specifically, the overall sentiment of comment is extracted
and used as a mediator between three endogenous variables (book, attendance, difficulty) and two
exogenous variables (grade and rating).  

To use this function, we need to first specify the model:

The function sem.sentiment  requires three parameters: the structural equation model, the input
data frame, and the name of the text variable in the data frame to be analyzed for sentiment.

## Install the package for text analysis
remotes::install_github("Stan7s/TextSEM")

## The package can be installed from CRAN directly in the future
# install.packages('TextSEM')

model <- ' rating ~ book + attendance + difficulty + comments
           grade ~ book + attendance + difficulty + comments
           comments ~ book + attendance + difficulty
         '

res <- sem.sentiment(model = model,
                     data = prof1000,
                     text_var=c('comments'))
summary(res$estimates, fit = TRUE)                     



The output of the analysis is given below:

lavaan 0.6.17 ended normally after 63 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        27

  Number of observations                         38240
  Number of missing patterns                         8

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                             31563.154
  Degrees of freedom                                12
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000
                                                      
  Robust Comparative Fit Index (CFI)             1.000
  Robust Tucker-Lewis Index (TLI)                1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)            -160948.572
  Loglikelihood unrestricted model (H1)    -160948.572
                                                      
  Akaike (AIC)                              321951.144
  Bayesian (BIC)                            322182.038
  Sample-size adjusted Bayesian (SABIC)     322096.232

Root Mean Square Error of Approximation:



  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value H_0: RMSEA <= 0.050                       NA
  P-value H_0: RMSEA >= 0.080                       NA
                                                      
  Robust RMSEA                                   0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value H_0: Robust RMSEA <= 0.050                NA
  P-value H_0: Robust RMSEA >= 0.080                NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Observed
  Observed information based on                Hessian

Regressions:
                          Estimate  Std.Err  z-value  P(>|z|)
  rating ~                                                   
    book                     0.169    0.013   12.905    0.000
    attendance               0.127    0.023    5.618    0.000
    difficulty              -0.331    0.004  -75.262    0.000
    cmmnts.OvrllSn           2.671    0.021  125.974    0.000
  grade ~                                                    
    book                    -0.080    0.051   -1.558    0.119
    attendance              -0.170    0.056   -3.058    0.002
    difficulty               0.742    0.020   36.382    0.000
    cmmnts.OvrllSn          -1.756    0.102  -17.171    0.000
  comments.OverallSenti ~                                    
    book                     0.043    0.003   13.053    0.000
    attendance               0.031    0.006    5.290    0.000
    difficulty              -0.074    0.001  -73.666    0.000



The path diagram for the model is 

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
 .rating ~~                                           
   .grade            -0.558    0.024  -23.191    0.000
  book ~~                                             
    attendance        0.017    0.002    8.374    0.000
    difficulty        0.030    0.004    8.650    0.000
  attendance ~~                                       
    difficulty        0.028    0.006    4.712    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .rating            3.995    0.022  182.815    0.000
   .grade             1.807    0.084   21.559    0.000
   .cmmnts.OvrllSn    0.367    0.005   69.455    0.000
    book              0.673    0.003  245.275    0.000
    attendance        0.732    0.004  164.946    0.000
    difficulty        2.928    0.007  445.625    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .rating            1.034    0.008  136.885    0.000
   .grade             4.222    0.069   61.443    0.000
   .cmmnts.OvrllSn    0.061    0.000  136.529    0.000
    book              0.220    0.002  120.633    0.000
    attendance        0.195    0.003   71.124    0.000
    difficulty        1.651    0.012  138.275    0.000



Topic modeling
Students' comments about an instructor typically cover multiple topics, such as teaching style,
classroom climate, and homework assignments. To identify these topics exploratorily and
understand their relationships with other variables, we can apply the sem.topic  function. This
function performs topic modeling and estimates the SEM model including those identified topics.

In this example, we combine the comments from multiple students for each instructor. We also get
the average scores for other variables. 

In addition to the three required parameters for sem.sentiment  – model, data, and text variables,
the sem.topic  function requires an additional parameter: n_topics . This parameter specifies the
number of topics to extract from each column of the text data. Based on previous cross-
validation analysis (Jacobucci et al., 2023), six topics were identified in this dataset. Consequently,
we will extract six topics. Note that only the first n − 1 topics will be incorporated into the SEM to
avoid perfect multicollinearity, where n is the total number of topics specified.

prof.nest <- prof1000 %>% group_by(profid) %>%
summarise(comments = paste(comments, collapse = " "),
          tags = paste(tags, collapse = ";"),
          rating = mean(rating, na.rm = TRUE), 
          difficulty=mean(difficulty, na.rm = TRUE),
          book = mean(book, na.rm = TRUE), 
          grade=mean(grade, na.rm = TRUE))
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The output is given below:

model <- ' rating ~ book + difficulty + comments'
res <- sem.topic(model = model, 
                 data = prof.nest, 
                 text_var = c('comments'), 
                 n_topics = c(6))
summary(res$estimates, fit=TRUE)

lavaan 0.6.17 ended normally after 1 iteration

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         8

                                                  Used       Total
  Number of observations                           984        1000

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                              1143.062
  Degrees of freedom                                 7
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -631.624
  Loglikelihood unrestricted model (H1)       -631.624
                                                      
  Akaike (AIC)                                1279.248



Text embedding

  Bayesian (BIC)                              1318.381
  Sample-size adjusted Bayesian (SABIC)       1292.973

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value H_0: RMSEA <= 0.050                       NA
  P-value H_0: RMSEA >= 0.080                       NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  rating ~                                            
    book              0.295    0.058    5.094    0.000
    difficulty       -0.335    0.023  -14.663    0.000
    comments.topc1    0.392    0.106    3.696    0.000
    comments.topc2    2.503    0.102   24.531    0.000
    comments.topc3    1.637    0.105   15.554    0.000
    comments.topc4   -0.344    0.090   -3.799    0.000
    comments.topc5    0.273    0.093    2.955    0.003

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .rating            0.211    0.010   22.181    0.000



Embedding techniques offer an advantage over topic models in their ability to construct latent
factors in higher dimensions from textual data. In this example, we demonstrate how to leverage
embedding techniques within the framework of SEM using the sem.emb  function.

Before we start, we need to set up the Python environment with the reticulate  package, which
provides a bridge between R and Python. The code below can be used for the purpose.

Although it is not required, we recommended first to embed the text and then include the
embedded vectors in the SEM analysis .The reason is that text embedding can be time consuming.
The embedded data can also be used in multiple models rather than just the model specified. 

We can use the sem.encode  function to generate text embeddings. This function supports pre-
trained models from SentenceBERT and OpenAI. Here, we'll use the all-mpnet-base-v2 model from
SentenceBERT. Note that when using OpenAI models, an API key must be specified in the system
directory.

We then incorporate these embeddings into an SEM model using the sem.emb  function. This
function allows us to integrate the rich semantic information captured by the embeddings into our
statistical model. Two key parameters in this function are: 1) pca_dim : the number of dimensions to
retain after applying PCA to the embeddings, and 2) emb_filepath : the file path to the saved
embeddings.

library(reticulate)

## First time set-up
virtualenv_create("r-reticulate")
py_install("transformers")
py_install("torch")
py_install("sentence_transformers")
py_install("openai")

## Call virtual environment
use_virtualenv("r-reticulate")

embeddings <- sem.encode(prof.nest$comments, 
                         encoder = "all-mpnet-base-v2")
## save the embeddings
save(embeddings, file="data/prof.nest.emb.rda")                         

sem_model <- ' rating ~ book + difficulty + comments'
res <- sem.emb(sem_model = sem_model, 
               data = prof.nest, 
               text_var = "comments", 



The output looks like:

               pca_dim = 10, 
               emb_filepath = "data/prof.nest.emb.rda")

lavaan 0.6.17 ended normally after 1 iteration

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        12

                                                  Used       Total
  Number of observations                           984        1000

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                               887.411
  Degrees of freedom                                11
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -759.449
  Loglikelihood unrestricted model (H1)       -759.449
                                                      
  Akaike (AIC)                                1542.898
  Bayesian (BIC)                              1601.598
  Sample-size adjusted Bayesian (SABIC)       1563.486

Root Mean Square Error of Approximation:



Note that to embed the text and conduct the analysis at the same time, one can use

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value H_0: RMSEA <= 0.050                       NA
  P-value H_0: RMSEA >= 0.080                       NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  rating ~                                            
    book              0.168    0.067    2.517    0.012
    difficulty       -0.406    0.026  -15.524    0.000
    comments.PC1    -10.239    0.549  -18.654    0.000
    comments.PC2     -4.308    0.539   -7.998    0.000
    comments.PC3      7.982    0.573   13.931    0.000
    comments.PC4     -1.373    0.526   -2.612    0.009
    comments.PC5     -0.484    0.534   -0.906    0.365
    comments.PC6      0.034    0.531    0.064    0.949
    comments.PC7      2.664    0.531    5.019    0.000
    comments.PC8     -1.183    0.527   -2.243    0.025
    comments.PC9      0.408    0.531    0.767    0.443

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .rating            0.274    0.012   22.181    0.000

res <- sem.emb(sem_model = sem_model, 
               data = prof.nest, 



               text_var = "comments", 
               pca_dim = 10, 
               encoder = "all-mpnet-base-v2")
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Use of Web App
One can conduct the analysis by drawing a path diagram. To start, click the "Path Diagram" button.
The interface below will appear:



A path diagram can be drawn through the buttons in the interface. In the example, we have a
mediation model where the text is used as a mediator for the association of “hard” (how difficulty
the class is) and “rating” (the numerical rating of the class). 

Different from a regular SEM, we need to specify the variable "comments" as a text variable by
setting "text = comments" in the "Control" field. 
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With that, one can click on the run button (the green arrow) to carry out the analysis. For example,
for the current model, we have the output as below. It mainly has two parts - the data description
and the model results.

Descriptive statistics (N=5000)

Model information
Observed variables: hard comments rating .
Text variables: comments .
The weight is: 0 .
The software to be used is: sem.text

                Mean        sd     Min       Max    Skewness Kurtosis
id        1.4343e+04 8314.0453  9.0000 28521.000  5.7205e-03   1.7654
profid    4.8633e+02  299.9069  1.0000  1000.000  2.9661e-02   1.7294
rating    3.8618e+00    1.4581  1.0000     5.000 -9.5170e-01   2.4063
hard      2.8908e+00    1.3156  1.0000     5.000  5.7725e-02   1.8941
sentiment 2.0682e-01    0.2668 -1.4732     1.803 -6.3469e-04   4.6312
          Missing Rate
id                   0
profid               0
rating               0
hard                 0
sentiment            0

lavaan 0.6-12 ended normally after 20 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         9

  Number of observations                          5000
  Number of missing patterns                         1

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                              4142.684
  Degrees of freedom                                 3
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000



Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -15862.021
  Loglikelihood unrestricted model (H1)     -15862.021
                                                      
  Akaike (AIC)                               31742.042
  Bayesian (BIC)                             31800.696
  Sample-size adjusted Bayesian (BIC)        31772.098

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value RMSEA <= 0.05                             NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Observed
  Observed information based on                Hessian

Regressions:
                          Estimate  Std.Err  z-value  P(>|z|)
  comments.OverallSenti ~                                    
    hard                    -0.075    0.003  -28.208    0.000
  rating ~                                                   
    cmmnts.OvrllSn           2.829    0.059   47.785    0.000
    hard                    -0.355    0.012  -29.605    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .cmmnts.OvrllSn    0.424    0.008   50.120    0.000
   .rating            4.304    0.043   99.150    0.000
    hard              2.891    0.019  155.389    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .cmmnts.OvrllSn    0.061    0.001   50.000    0.000
   .rating            1.076    0.022   50.000    0.000
    hard              1.730    0.035   50.000    0.000



Video tutorials text data
analysis
Here we show how to conduct different types of analysis.

Mediation analysis with dictionary-based
sentiment
The model used here is 

The video tutorial

Mediation analysis with AI-based
sentiment
The model is 
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Factor analysis
In this example, we form a factor using two text variables - teaching comments and tags.
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