The development of the networksem Package
The Development of the networksem Package
The package networksem includes various functions to analyze network data in the SEM framework. networksem has two major components.
- Functions started with sem.net: These are functions used to convert network data into SEM compatible formats and then embed those data in lavaan-based SEM analyses.
- Other functions: functions such as summary() and path.networksem() calculates values of interest such as mediation effect post-hoc.
List of functions
The following functions are available in the packages. The exported functions are:
- sem.net
- sem.net.edge
- sem.net.edge.lsm
- sem.net.lsm
- summary.networksem
The following functions are not imported and are used by other functions.
- sem.net.addvar.stat
- sem.net.addvar.influential
- sem.net.addvar
Thesem.net
Development#' Fit a sem model with network data using node statistics as variables. User-specified network statistics will be calculated and used as variables instead of the TextSEMnetworks Package
themselves in the SEM.
#' @param model a model specified in lavaan model syntax.
#' @param data a list containing the observed non-network nodal variables and the network data
#' @param netstats a user-specified list of network statistics to be calculated and used in the SEM, e.g., c("degree", "betweenness"), available options include "degree", "betweenness", "closeness", "evcent", "stresscent", and "infocent" from the "sna" package and "ivi", "hubness.score", "spreading.score" and "clusterRank" from the "influential" package
#' @param netstats.options a user-specified named list with element names corresponding to the network statistics names and element values corresponding to other lists. The list corresponding to each network statistics name has element names being the argument names for calculating the network statistics, and values being the argument values, as used in the corresponding functions in the "sna" or "influential" packages. e.g., netstats.options=list("degree"=list("cmode"="freeman"), "closeness"=list("cmode"="undirected"), "clusterRank"=list("directed"=FALSE))
#' @param netstats.rescale a list of logical value indicating whether to rescale network statistics to have mean 0 and sd 1.
#' @param data.rescale whether to rescale the whole dataset (with restructured network and nonnetwork data) to have mean 0 and standard deviation 1 when fitting it to SEM, default to FALSE
#' @param ordered parameter same as "ordered" in the lavaan sem() function; whether to treat data as ordinal
#' @param sampling.weights parameter same as "sampling.weights" in the lavaan sem() function; whether to apply weights to data
#' @param group parameter same as "group" in the lavaan sem() function; whether to fit a multigroup model
#' @param cluster parameter same as "cluster" in the lavaan sem() function; whether to fit a cluster model
#' @param constraints parameter same as "constraints" in the lavaan sem() function; whether to apply constraints to the model
#' @param WLS.V parameter same as "WLS.V" in the lavaan sem() function; whether to use WLS.V estimator
#' @param NACOV parameter same as "NACOV" in the lavaan sem() function; whether to use NACOV estimator
#' @param ... optional arguments for the sem() function
#' @return the updated model specification with the network statistics as variables and a lavaan object which is the SEM results
#' @import lavaan
#' @import sna
#' @import igraph
#' @import influential
#' @import latentnet
#' @import ergm
#' @import network
#' @export
#' @examples
#' \donttest{
#' set.seed(100)
#' nsamp = 20
#' net <- ifelse(matrix(rnorm(nsamp^2), nsamp, nsamp) > 1, 1, 0)
#' mean(net) # density of simulated network
#' lv1 <- rnorm(nsamp)
#' lv2 <- rnorm(nsamp)
#' nonnet <- data.frame(x1 = lv1*0.5 + rnorm(nsamp),
#' x2 = lv1*0.8 + rnorm(nsamp),
#' x3 = lv2*0.5 + rnorm(nsamp),
#' x4 = lv2*0.8 + rnorm(nsamp))
#'
#' model <-'
#' lv1 =~ x1 + x2
#' lv2 =~ x3 + x4
#' net ~ lv2
#' lv1 ~ net + lv2
#' '
#' data = list(network = list(net = net), nonnetwork = nonnet)
#' set.seed(100)
#' res <- sem.net(model = model, data = data, netstats = c('degree'))
#' summary(res)
#' }
sem.net <- function(model=NULL, data=NULL, netstats=NULL,
ordered = NULL, sampling.weights = NULL, data.rescale = FALSE,
netstats.rescale = FALSE, group = NULL, cluster = NULL,
constraints = "", WLS.V = NULL, NACOV = NULL,
netstats.options=NULL, ...){
## checking proper input
if(is.null(model)){
stop("required argument model is not specified.")
}
if(is.null(data)){
stop("required argument data is not specified.")
}
params <- c(as.list(environment()), list(...))
## get the variable names in the model
model.info <- lavaan::lavParseModelString(model)
model.var <- unique(c(model.info$lhs, model.info$rhs))
## non-network data variable names
data.nonnetwork.var <- names(data$nonnetwork)
## network data variable names
if (!is.null(data$network)){
data.network.var <- names(data$network)
}
## find the network variables in the model
model.network.var <- data.network.var[data.network.var %in% model.var]
## create variables for network data and model
## add network data variables to the non-network data
model.network.stat.var.list <- list()
if (length(model.network.var) > 0){
if (is.null(netstats)){
## loop through the statistics
for (i in 1:length(model.network.var)){
## call helper function, which loops over all target statistics to be used
res.tmp <- sem.net.addvar(model.network.stat.var.list, data, c("degree"), model.network.var[i])
model.network.stat.var.list <-res.tmp[[1]]
data$nonnetwork <- res.tmp[[2]]
}
}else{
## loop through the variables and statistics
for (i in 1:length(model.network.var)){
res.tmp <- sem.net.addvar(model.network.stat.var.list, data, netstats, model.network.var[i], netstats.rescale, netstats.options)
model.network.stat.var.list <- res.tmp[[1]]
data$nonnetwork <- res.tmp[[2]]
}
}
}
## reconstruct the path model with the network variables
## replace the network variable name with the network variable stats name
## lavaanify the model
model.lavaanify <- lavaan::lavaanify(model)
## get the use specified model information
model.user <- model.lavaanify[model.lavaanify$user==1, ]
## now process each part of the user specified model
model.to.remove.index <- NULL # row index of the model items to remove
model.to.add <- ""
for (i in 1:nrow(model.user)){
## check if the variable on the lhs is a network variable
if (model.user$lhs[i] %in% model.network.var && (!(model.user$rhs[i] %in% model.network.var))){
## if it is, record the index i and create new model items for te network
model.to.remove.index <- c(model.to.remove.index, i)
model.stat.var.to.add <- model.network.stat.var.list[[model.user$lhs[i]]]
for (j in 1:length(model.stat.var.to.add)){
model.temp <- paste0("\n", model.stat.var.to.add[j], model.user$op[i], model.user$rhs[i])
model.to.add <- paste0(model.to.add, model.temp)
}
}
## check if the variable on the rhs is a network variable and the lhs is not
if (model.user$rhs[i] %in% model.network.var && (!(model.user$lhs[i] %in% model.network.var))){
## record the index i and create new model items
model.to.remove.index <- c(model.to.remove.index, i)
model.stat.var.to.add <- model.network.stat.var.list[[model.user$rhs[i]]]
for (j in 1:length(model.stat.var.to.add)){
model.temp <- paste0("\n", model.user$lhs[i], model.user$op[i], model.stat.var.to.add[j])
model.to.add <- paste0(model.to.add, model.temp)
}
}
## check if both lhs and rhs are network variables
if (model.user$rhs[i] %in% model.network.var && model.user$lhs[i] %in% model.network.var){
## if it is, record the index i and create new model items
model.to.remove.index <- c(model.to.remove.index, i)
model.stat.var.to.add.rhs <- model.network.stat.var.list[[model.user$rhs[i]]]
model.stat.var.to.add.lhs <- model.network.stat.var.list[[model.user$lhs[i]]]
for (j in 1:length(model.stat.var.to.add.rhs)){
for (k in 1:length(model.stat.var.to.add.lhs)){
model.temp <- paste0("\n", model.stat.var.to.add.lhs[j], model.user$op[i], model.stat.var.to.add.rhs[k])
model.to.add <- paste0(model.to.add, model.temp)
}
}
}
}
model.remove.network.var <- model.user[-model.to.remove.index, ] # remove initial model specification
# add altered model specification
model.non.network.var <- ""
if (nrow(model.remove.network.var) > 0 ){
for (i in 1:nrow(model.remove.network.var)){
model.non.network.var.temp <- paste0(paste0(model.remove.network.var[i, c('lhs', 'op', 'rhs')], collapse = ' '))
model.non.network.var <- paste0(model.non.network.var.temp, "\n", model.non.network.var)
}
}
model.full <- paste0(model.non.network.var, "\n", model.to.add)
# if(!is.null(community)){
# communities_clust <- cutree(sna::equiv.clust(network)$cluster, k=community)
# data["communities_clust"]<-communities_clust
# }
#
# if(!is.null(community) || !is.null(group)){
# group <- ifelse(!is.null(community), "communities_clust", group)
# }
#
lavparams <- list()
for (i in 1:length(params)){
if (names(params)[i] %in% names(lavaan::lavOptions())){
lavparams[[names(params[i])]] <- params[[i]]
}
}
if (data.rescale){
for (i in 1:ncol(data$nonnetwork)){
if (is.numeric(data$nonnetwork[,i])){
data$nonnetwork[,i] <- scale(data$nonnetwork[,i], center = TRUE, scale = TRUE)
}
}
}
lavparams[["data"]] <- data$nonnetwork
lavparams[["model"]] <- model.full
lavparams[["ordered"]] <- ordered
lavparams[["sampling.weights"]] <- sampling.weights
lavparams[["group"]] <- group
lavparams[["cluster"]] <- cluster
lavparams[["constraints"]] <- constraints
lavparams[["WLS.V"]] <- WLS.V
lavparams[["NACOV"]] <- NACOV
model.res <- do.call(what="sem", args=c(lavparams))
obj <- list(model=model.full, estimates=model.res, data=data)
class(obj) <- "networksem"
return(obj)
}
#' Fit a sem model with network data using node statistics as variables. User-specified network statistics will be calculated and used as variables instead of the TextSEMnetworks Package
sem.net.edge
#' Fit a sem model with network data using node latent positions and/or network statistics as variables. User-specified network statistics will be calculated and used as variables instead of the networks themselves in the SEM.
#' @param model a model specified in lavaan model syntax.
#' @param data a list containing both the non-network and network data
#' @param netstats.rescale a logical value indicating whether to rescale network statistics or variables to have mean 0 and sd 1
#' @param data.rescale whether to rescale the whole dataset (with restructured network and nonnetwork data) to have mean 0 and standard deviation 1 when fitting it to SEM, default to FALSE
#' @param ordered parameter same as "ordered" in the lavaan sem() function; whether to treat data as ordinal
#' @param sampling.weights parameter same as "sampling.weights" in the lavaan sem() function; whether to apply weights to data
#' @param group parameter same as "group" in the lavaan sem() function; whether to fit a multigroup model
#' @param cluster parameter same as "cluster" in the lavaan sem() function; whether to fit a cluster model
#' @param constraints parameter same as "constraints" in the lavaan sem() function; whether to apply constraints to the model
#' @param WLS.V parameter same as "WLS.V" in the lavaan sem() function; whether to use WLS.V estimator
#' @param NACOV parameter same as "NACOV" in the lavaan sem() function; whether to use NACOV estimator
#' @param latent.dim number of network latent dimensions to use
#' @param ... optional arguments for the sem() function
#' @return the updated model specification with the network statistics as variables and a lavaan object which is the SEM results
#' @export
#' @examples
#' \dontrun{
#' \donttest{
#' set.seed(10)
#' nsamp = 20
#' net <- ifelse(matrix(rnorm(nsamp^2), nsamp, nsamp) > 1, 1, 0)
#' mean(net) # density of simulated network
#' lv1 <- rnorm(nsamp)
#' lv2 <- rnorm(nsamp)
#' nonnet <- data.frame(x1 = lv1*0.5 + rnorm(nsamp),
#' x2 = lv1*0.8 + rnorm(nsamp),
#' x3 = lv2*0.5 + rnorm(nsamp),
#' x4 = lv2*0.8 + rnorm(nsamp))
#'
#' model <-'
#' lv1 =~ x1 + x2
#' lv2 =~ x3 + x4
#' net ~ lv2
#' lv1 ~ net + lv2
#' '
#' data = list(network = list(net = net), nonnetwork = nonnet)
#' set.seed(100)
#' res <- sem.net.lsm(model = model, data = data, latent.dim = 2)
#' summary(res)
#' }}
sem.net.lsm <- function(model=NULL, data=NULL, latent.dim = 2,
ordered = NULL, sampling.weights = NULL, data.rescale=FALSE,
netstats.rescale=FALSE, group = NULL, cluster = NULL,
constraints = "", WLS.V = NULL, NACOV = NULL, ...){
## checking proper input
if(is.null(model)){
stop("required argument model is not specified.")
}
if(is.null(data)){
stop("required argument data is not specified.")
}
params <- c(as.list(environment()), list(...))
## get the variable names in the model
model.info <- lavaan::lavParseModelString(model)
model.var <- unique(c(model.info$lhs, model.info$rhs))
## non-network data variable names
data.nonnetwork.var <- names(data$nonnetwork)
## network data variable names
if (!is.null(data$network)){
data.network.var <- names(data$network)
}
latent.network = data.network.var
## find the network variables in the model
model.network.var <- data.network.var[data.network.var %in% model.var]
## create variables for network data and model
## add network data variables to the non-network data
latent.vars <- list()
model.lavaanify <- lavaan::lavaanify(model)
## get the use specified model information
model.user <- model.lavaanify[model.lavaanify$user==1, ]
## estimate network latent positions
lsm.fits <- list()
for (i in 1:length(latent.network)){
fit <- latentnet::ergmm(network::network(data$network[[latent.network[i]]]) ~ euclidean(d = latent.dim))
lsm.fits[[i]] <-fit
latent.vars[[latent.network[i]]] <- c()
for (dimind in 1:latent.dim){
data$nonnetwork[paste0(latent.network[i], ".Z", dimind)] <- fit$mcmc.mle$Z[,dimind]
if (netstats.rescale){
data$nonnetwork[paste0(latent.network[i], ".Z", dimind)] <- scale(fit$mcmc.mle$Z[,dimind], center = TRUE, scale = TRUE)
}
latent.vars[[latent.network[i]]] <- c(latent.vars[[latent.network[i]]], paste0(latent.network[i], ".Z", dimind))
}
}
# print(lsm.fits)
## reconstruct the path model with the network variables
## replace the network variable name with the network variable stats name
## lavaanify the model
model.lavaanify <- lavaan::lavaanify(model)
## get the use specified model information
model.user <- model.lavaanify[model.lavaanify$user==1, ]
## now process each part of the user specified model
model.to.remove.index <- NULL
model.to.add <- ""
for (i in 1:nrow(model.user)){
## check if left is network with LSM, remake
if (model.user$lhs[i] %in% latent.network){
model.to.remove.index <- c(model.to.remove.index, i)
model.stat.var.to.add <- latent.vars[[model.user$lhs[i]]]
for (j in 1:length(model.stat.var.to.add)){
model.temp <- paste0("\n ", model.stat.var.to.add[j], model.user$op[i], model.user$rhs[i])
model.to.add <- paste0(model.to.add, model.temp)
}
}
## check if right is network with LSM and left is other variables
if (model.user$rhs[i] %in% latent.network){
model.to.remove.index <- c(model.to.remove.index, i)
model.stat.var.to.add <- latent.vars[[model.user$rhs[i]]]
for (j in 1:length(model.stat.var.to.add)){
model.temp <- paste0("\n ", model.user$lhs[i], model.user$op[i], model.stat.var.to.add[j])
model.to.add <- paste0(model.to.add, model.temp)
}
}
}
if (!is.null(model.to.remove.index)){
model.remove.network.var <- model.user[-model.to.remove.index, ]
}
model.non.network.var <- ""
if(nrow(model.remove.network.var) > 0){
for (i in 1:nrow(model.remove.network.var)){
model.non.network.var.temp <- paste0(paste0(model.remove.network.var[i, c('lhs', 'op', 'rhs')], collapse = ' '))
model.non.network.var <- paste0(model.non.network.var.temp, "\n", model.non.network.var)
}
}
model.full <- paste0(model.non.network.var, "\n", model.to.add)
lavparams <- list()
for (i in 1:length(params)){
if (names(params)[i] %in% names(lavOptions())){
lavparams[[names(params[i])]] <- params[[i]]
}
}
if (data.rescale){
for (i in 1:ncol(data$nonnetwork)){
if (is.numeric(data$nonnetwork[,i])){
data$nonnetwork[,i] <- scale(data$nonnetwork[,i], center = TRUE, scale = TRUE)
}
}
}
lavparams[["data"]] <- data$nonnetwork
lavparams[["model"]] <- model.full
lavparams[["ordered"]] <- ordered
lavparams[["sampling.weights"]] <- sampling.weights
lavparams[["group"]] <- group
lavparams[["cluster"]] <- cluster
lavparams[["constraints"]] <- constraints
lavparams[["WLS.V"]] <- WLS.V
lavparams[["NACOV"]] <- NACOV
model.res <- do.call(what="sem", args=c(lavparams))
obj <- list(model=model.full, estimates=list(sem.es=model.res,lsm.es=lsm.fits), data=data)
class(obj) <- "networksem"
return(obj)
}