Skip to main content

Node based analysis with latent space model

We fit the same model on the friendship and WeChat networks using the LSM approach. Under this approach, the latent positions take the roles of the network statistics. To denote latent positions, we modify the model section as shown below. An additional step indicating the estimation of latent positions is needed: friends ˜lp.friends for the friendship network and wechat ˜lp.wechat for the WeChat network. The latent positions are then used in the regression part of the model.

model <-'
 # measurement model
  Extroversion =~ personality1 + personality6
                + personality11 + personality16
  Conscientiousness =~ personality2 + personality7
                + personality12 + personality17
  Neuroticism  =~ personality3 + personality8
                + personality13 + personality18
  Openness =~ personality4 + personality9
                + personality14 + personality19
  Agreeableness =~ personality5 + personality10 +
                personality15 + personality20
  Happiness =~ happy1 + happy2 + happy3 + happy4
 # LSM
  friends ~ lp.friends
  wechat ~ lp.wechat
 # structural model
  lp.friends ~ a1*Extroversion + a2*Conscientiousness + a3*Neuroticism + 
  a4*Openness + a5*Agreeableness
  Happiness ~ b1*lp.friends + b2*lp.wechat 
'

To fit the model,  the sem.net.lsm() function is used. The argument latent.dim should be used to denote the number of latent
dimensions to be used in estimating the LSM. A random seed can be set to ensure reproduction of the results.

data = list(network=network, nonnetwork=non_network)
set.seed(100)
res <- sem.net.lsm(model=model,data=data, latent.dim = 2, data.rescale = T)

For SEM with latent positions, the estimation is again a two-stage process. First, a latent space model with no covariates is used to estimate latent positions through the latentnet R package. The resulting latent positions are then be extracted and compiled into the same dataset as the non-network variables such as the Big Five personality items and the happiness score items, which are then inputted into lavaan to be estimated in the SEM framework. We could again use res$data to access the restructured data with latent positions, and res$model to access the modified model string. The output of sem.net.lsm() has two components in res$estimates - res$estimates$sem.es for lavaan SEM results and res$estimates$lsm.es for latentnet LSM results.

The output of the analysis is given below:

lavaan 0.6.15 ended normally after 195 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        74

  Number of observations                           165

Model Test User Model:
                                                      
  Test statistic                               947.953
  Degrees of freedom                               329
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              1448.277
  Degrees of freedom                               377
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.422
  Tucker-Lewis Index (TLI)                       0.338

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -6642.329
  Loglikelihood unrestricted model (H1)      -6168.353
                                                      
  Akaike (AIC)                               13432.658
  Bayesian (BIC)                             13662.498
  Sample-size adjusted Bayesian (SABIC)      13428.214

Root Mean Square Error of Approximation:

  RMSEA                                          0.107
  90 Percent confidence interval - lower         0.099
  90 Percent confidence interval - upper         0.115
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.119

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                       Estimate  Std.Err  z-value  P(>|z|)
  Happiness =~                                            
    happy4                1.000                           
    happy3               -4.299    3.529   -1.218    0.223
    happy2               -6.668    5.428   -1.229    0.219
    happy1               -6.874    5.596   -1.229    0.219
  Agreeableness =~                                        
    personality20         1.000                           
    personality15        -0.955    0.754   -1.267    0.205
    personality10        -4.410    2.423   -1.820    0.069
    personality5         -4.034    2.211   -1.824    0.068
  Openness =~                                             
    personality19         1.000                           
    personality14         0.722    0.158    4.571    0.000
    personality9         -0.200    0.100   -2.005    0.045
    personality4         -0.088    0.101   -0.873    0.383
  Neuroticism =~                                          
    personality18         1.000                           
    personality13        -0.508    0.144   -3.530    0.000
    personality8         -0.798    0.172   -4.651    0.000
    personality3         -0.354    0.133   -2.664    0.008
  Conscientiousness =~                                    
    personality17         1.000                           
    personality12        -0.523    0.180   -2.911    0.004
    personality7         -0.455    0.189   -2.412    0.016
    personality2          1.055    0.241    4.378    0.000
  Extroversion =~                                         
    personality16         1.000                           
    personality11         0.632    0.151    4.181    0.000
    personality6         -0.559    0.138   -4.038    0.000
    personality1         -0.558    0.134   -4.170    0.000

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  friends.Z1 ~                                        
    Extroversion     -0.383    0.457   -0.838    0.402
  friends.Z2 ~                                        
    Extroversion     -0.586    0.491   -1.192    0.233
  friends.Z1 ~                                        
    Conscientisnss   -0.148    1.023   -0.144    0.885
  friends.Z2 ~                                        
    Conscientisnss    0.503    1.048    0.480    0.631
  friends.Z1 ~                                        
    Neuroticism      -0.004    0.718   -0.006    0.995
  friends.Z2 ~                                        
    Neuroticism       1.780    0.898    1.982    0.048
  friends.Z1 ~                                        
    Openness          0.352    0.466    0.756    0.450
  friends.Z2 ~                                        
    Openness         -1.003    0.559   -1.794    0.073
  friends.Z1 ~                                        
    Agreeableness     0.961    2.930    0.328    0.743
  friends.Z2 ~                                        
    Agreeableness    -2.654    3.260   -0.814    0.416
  Happiness ~                                         
    friends.Z1       -0.016    0.013   -1.165    0.244
    friends.Z2       -0.002    0.005   -0.394    0.693
    wechat.Z1         0.019    0.017    1.146    0.252
    wechat.Z2        -0.001    0.006   -0.192    0.848

Covariances:
                       Estimate  Std.Err  z-value  P(>|z|)
  Agreeableness ~~                                        
    Openness              0.018    0.019    0.965    0.334
    Neuroticism           0.044    0.029    1.538    0.124
    Conscientisnss       -0.075    0.043   -1.727    0.084
    Extroversion         -0.011    0.020   -0.553    0.580
  Openness ~~                                             
    Neuroticism           0.346    0.075    4.596    0.000
    Conscientisnss       -0.141    0.063   -2.233    0.026
    Extroversion          0.085    0.080    1.063    0.288
  Neuroticism ~~                                          
    Conscientisnss       -0.150    0.063   -2.391    0.017
    Extroversion          0.212    0.081    2.605    0.009
  Conscientiousness ~~                                    
    Extroversion          0.154    0.074    2.073    0.038

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .happy4            2.702    0.298    9.065    0.000
   .happy3            1.218    0.146    8.332    0.000
   .happy2            0.569    0.137    4.141    0.000
   .happy1            0.522    0.142    3.678    0.000
   .personality20     1.103    0.123    8.968    0.000
   .personality15     1.208    0.134    8.987    0.000
   .personality10     0.511    0.135    3.773    0.000
   .personality5      0.786    0.135    5.806    0.000
   .personality19     0.184    0.139    1.326    0.185
   .personality14     0.710    0.107    6.662    0.000
   .personality9      0.858    0.095    9.013    0.000
   .personality4      0.964    0.106    9.072    0.000
   .personality18     0.484    0.104    4.635    0.000
   .personality13     0.929    0.109    8.529    0.000
   .personality8      0.963    0.125    7.720    0.000
   .personality3      0.899    0.102    8.809    0.000
   .personality17     0.568    0.102    5.555    0.000
   .personality12     1.055    0.123    8.600    0.000
   .personality7      1.270    0.145    8.781    0.000
   .personality2      1.065    0.151    7.046    0.000
   .personality16     0.641    0.167    3.831    0.000
   .personality11     1.120    0.144    7.796    0.000
   .personality6      1.011    0.127    7.983    0.000
   .personality1      0.883    0.113    7.813    0.000
   .friends.Z1        9.034    1.006    8.984    0.000
   .friends.Z2        7.746    1.033    7.497    0.000
   .Happiness         0.025    0.041    0.615    0.538
    Agreeableness     0.034    0.036    0.934    0.350
    Openness          0.712    0.168    4.234    0.000
    Neuroticism       0.508    0.131    3.880    0.000
    Conscientisnss    0.387    0.117    3.310    0.001
    Extroversion      0.798    0.208    3.842    0.000

The path diagram is given below:

ex2.png