Use of Web App for SEM with Networks
The network data analysis can also be conducted using our online app available at: https://bigsem.psychstat.org/app . To use the app, one need to register as a user to protect the data of the users. Once logging in, a user with work with an interface like below:
Organizing data
Organizing the data for analysis is the first step for using the app or R package. In R, the data are provided as a list with a non-network component and a network component. To conveniently organize the data online, we developed a simple app.
To use the app, one first upload the non-network data and network data sets as separate files. Then, in the app, one selects the corresponding data files. An example is given below with two networks - friendship and WeChat networks. Note that the new data set will be saved as R data with the provided name, i.e., mynetworkdata.RData
in this example.
Conducting the analysis
We use a simple example to illustrate the use of the online app. To conduct the analysis, we need to first draw the path diagram of the model. Here, we create a latent happiness factor (happy.f) from the 4-item measure of global subjective happiness. We then use the friendship network to predict the happiness factor.
For the network analysis, one needs to choose the software to use, here "NetworkSEM". Then, one selects the Data File "network.RData".
For the network statistics based method, one need to choose what statistics to use. Here, one can specify them in the "Control" field. In this example, we use netstats = degree, betweenness, closeness
to allow the use of the three network statistics.
To run the analysis, one clicks on the green triangle in the left panel. The output of the analysis is given below. The output has several parts:
- The basic information, particularly, the user and the analysis id
7cf61d4792351966add082d56368301d
. - The descriptive statistics for numerical variables in the non-network data set.
- The information on the networks.
- The basic model information
- The results from fitting the model.
BigSEM started at 15:36:50 on Oct 22, 2024.
=====================================
Please refresh your browser for complete output of complex data analysis.
The current analysis was conducted by the BigSEM user johnny.
To contact us, make sure to include the ticket # for this analysis 7cf61d4792351966add082d56368301d
Descriptive statistics (N=165, p=59)
Mean sd Min Max Skewness Kurtosis gender 0.55152 0.49885 0.000 1.0000 -0.2071631 1.0429 gpa 3.27293 0.48805 1.173 4.2200 -0.6399076 4.2619 age 21.64242 0.85505 18.000 24.0000 -0.1255522 4.5903 weight 62.29091 14.16756 37.000 110.0000 0.9021334 3.2265 height 169.54545 8.15808 155.000 188.0000 0.3186553 1.9660 smoke 0.26061 0.44030 0.000 1.0000 1.0907192 2.1897 drink 0.41212 0.49372 0.000 1.0000 0.3570735 1.1275 wechat 157.32927 180.36548 0.000 1000.0000 2.9199355 11.9943 id 83.00000 47.77552 1.000 165.0000 0.0000000 1.7999 personality1 2.81818 1.06652 1.000 5.0000 -0.0869982 2.4384 personality2 2.61818 1.22710 1.000 5.0000 0.3212422 2.0339 personality3 2.45455 0.98436 1.000 5.0000 0.4540597 2.8503 personality4 2.64242 0.98743 1.000 5.0000 0.1910639 2.5725 personality5 3.03636 1.15764 1.000 5.0000 -0.0235915 2.2242 personality6 3.07879 1.12612 1.000 5.0000 0.1017642 2.3871 personality7 3.27273 1.16537 1.000 5.0000 -0.1954555 2.1881 personality8 2.36970 1.13816 1.000 5.0000 0.5103888 2.4850 personality9 2.75758 0.94451 1.000 5.0000 0.3684034 3.1224 personality10 3.01212 1.08194 1.000 5.0000 0.0049198 2.5241 personality11 2.89697 1.20276 1.000 5.0000 0.0931915 2.2009 personality12 3.78788 1.08081 1.000 5.0000 -0.4433181 2.2537 personality13 2.61818 1.03283 1.000 5.0000 0.3473757 2.9438 personality14 3.80000 1.04298 1.000 5.0000 -0.5964333 2.8276 personality15 3.42424 1.11613 1.000 5.0000 -0.3898210 2.5711 personality16 2.65455 1.20292 1.000 5.0000 0.2450516 2.2534 personality17 2.31515 0.98033 1.000 5.0000 0.3493841 2.6210 personality18 3.59394 0.99937 1.000 5.0000 -0.1128832 2.1067 personality19 3.82424 0.94966 1.000 5.0000 -0.5435870 3.1673 personality20 3.12121 1.06946 1.000 5.0000 0.0874853 2.4055 depress1 0.98788 0.55202 0.000 3.0000 0.6478164 5.7357 depress2 0.61818 0.58926 0.000 3.0000 0.5205043 3.3723 depress3 0.76364 0.78002 0.000 3.0000 0.8239322 3.2396 depress4 0.91515 0.59884 0.000 3.0000 0.3722678 4.0971 depress5 0.70303 0.67376 0.000 3.0000 0.6728525 3.3429 depress6 0.80606 0.69753 0.000 3.0000 0.7141707 3.7965 depress7 0.66667 0.70998 0.000 3.0000 0.8848909 3.5949 lone1 1.04848 0.77935 0.000 3.0000 0.2260045 2.3813 lone2 1.26667 0.88437 0.000 3.0000 0.1437581 2.2374 lone3 1.03030 0.87251 0.000 3.0000 0.2729773 2.0401 lone4 1.29091 0.90404 0.000 3.0000 0.1403947 2.1952 lone5 1.27879 0.88750 0.000 3.0000 0.0558801 2.1521 lone6 0.85455 0.79828 0.000 3.0000 0.5543989 2.5604 lone7 0.98788 0.85531 0.000 3.0000 0.3749858 2.2210 lone8 1.64242 0.89682 0.000 3.0000 -0.2540419 2.3354 lone9 1.00000 0.86954 0.000 3.0000 0.3907138 2.2320 lone10 0.88485 0.76832 0.000 3.0000 0.5218129 2.7655 happy1 5.34545 1.31897 1.000 7.0000 -0.8142547 3.6334 happy2 5.25455 1.30969 1.000 7.0000 -0.7392627 3.2077 happy3 5.24848 1.30387 2.000 7.0000 -0.4342157 2.6097 happy4 3.89091 1.65654 1.000 7.0000 0.1177261 2.2404 lone 1.12848 0.56674 0.000 2.6000 -0.0868936 2.8135 depress 0.78009 0.41754 0.000 1.8571 0.1401042 2.5266 happy 4.93485 0.86774 2.500 7.0000 0.2112938 3.2653 p.e 2.91364 0.78605 1.000 5.0000 0.1731648 3.4108 p.c 3.53182 0.69743 2.000 5.0000 0.2454618 2.4799 p.i 3.53788 0.68721 1.500 5.0000 -0.2099051 2.6462 p.a 3.55606 0.61259 1.750 5.0000 0.0235716 2.8378 p.n 2.87576 0.63835 1.000 4.7500 0.1728206 3.3815 bmi 21.50942 3.84812 15.401 39.5197 1.5035276 6.1558 Missing Rate gender 0.0000000 gpa 0.0000000 age 0.0000000 weight 0.0000000 height 0.0000000 smoke 0.0000000 drink 0.0000000 wechat 0.0060606 id 0.0000000 personality1 0.0000000 personality2 0.0000000 personality3 0.0000000 personality4 0.0000000 personality5 0.0000000 personality6 0.0000000 personality7 0.0000000 personality8 0.0000000 personality9 0.0000000 personality10 0.0000000 personality11 0.0000000 personality12 0.0000000 personality13 0.0000000 personality14 0.0000000 personality15 0.0000000 personality16 0.0000000 personality17 0.0000000 personality18 0.0000000 personality19 0.0000000 personality20 0.0000000 depress1 0.0000000 depress2 0.0000000 depress3 0.0000000 depress4 0.0000000 depress5 0.0000000 depress6 0.0000000 depress7 0.0000000 lone1 0.0000000 lone2 0.0000000 lone3 0.0000000 lone4 0.0000000 lone5 0.0000000 lone6 0.0000000 lone7 0.0000000 lone8 0.0000000 lone9 0.0000000 lone10 0.0000000 happy1 0.0000000 happy2 0.0000000 happy3 0.0000000 happy4 0.0000000 lone 0.0000000 depress 0.0000000 happy 0.0000000 p.e 0.0000000 p.c 0.0000000 p.i 0.0000000 p.a 0.0000000 p.n 0.0000000 bmi 0.0000000
Network data information
#row #col friends 165 165 wechat 165 165
Model information
Observed non-network variables: happy1 happy2 happy3 happy4 .
Observed network variables: friends .
Latent variables: happy.f .
The weight is: 0 .
Results
lavaan 0.6-18 ended normally after 66 iterations Estimator ML Optimization method NLMINB Number of model parameters 11 Number of observations 165 Model Test User Model: Test statistic 14.749 Degrees of freedom 11 P-value (Chi-square) 0.194 Model Test Baseline Model: Test statistic 162.858 Degrees of freedom 18 P-value 0.000 User Model versus Baseline Model: Comparative Fit Index (CFI) 0.974 Tucker-Lewis Index (TLI) 0.958 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -1077.697 Loglikelihood unrestricted model (H1) -1070.322 Akaike (AIC) 2177.394 Bayesian (BIC) 2211.559 Sample-size adjusted Bayesian (SABIC) 2176.733 Root Mean Square Error of Approximation: RMSEA 0.045 90 Percent confidence interval - lower 0.000 90 Percent confidence interval - upper 0.099 P-value H_0: RMSEA <= 0.050 0.498 P-value H_0: RMSEA >= 0.080 0.170 Standardized Root Mean Square Residual: SRMR 0.039 Parameter Estimates: Standard errors Standard Information Expected Information saturated (h1) model Structured Latent Variables: Estimate Std.Err z-value P(>|z|) happy.f =~ happy4 1.000 happy3 -4.933 5.032 -0.980 0.327 happy2 -7.445 7.547 -0.986 0.324 happy1 -8.133 8.251 -0.986 0.324 Regressions: Estimate Std.Err z-value P(>|z|) happy.f ~ friends.degree -0.024 0.037 -0.655 0.513 frinds.btwnnss 0.019 0.029 0.654 0.513 friends.clsnss 0.011 0.027 0.401 0.689 Variances: Estimate Std.Err z-value P(>|z|) .happy4 2.708 0.299 9.070 0.000 .happy3 1.219 0.147 8.306 0.000 .happy2 0.633 0.150 4.207 0.000 .happy1 0.450 0.167 2.701 0.007 .happy.f 0.019 0.039 0.494 0.621
=====================================
BigSEM ended at 15:36:50 on Oct 22, 2024